
Clinical Quality Language (CQL) Basics

Thursday September 1, 2016

4:00 PM EDT

Jennifer Harris
Centers for Medicare & Medicaid Services

Bryn Rhodes
ESAC, Inc.

Agenda

• Welcome and Background

• CQL Language Tour

 Accessing Clinical Data

 Using Queries

 Computation

 Date/Times, Intervals, and Timing Phrases

 Combining Queries

 Aggregate Computation

9/1/2016 2

CQL Basics

Evolving eCQM Standards

9/1/2016 3

CQL Basics

Proposed Timeline For Updating

Standards

9/1/2016 4

CQL Basics

CQL LANGUAGE TOUR

9/1/2016 5

CQL Basics

Clinical Quality Language (CQL)

• Health Level 7(HL7) standard designed to:

 Enable automated point-to-point sharing of

executable clinical knowledge

 Provide a clinically focused, author-friendly, and

human-readable language

• Currently a Draft Standard for Trial Use (DSTU)

publication

 http://www.hl7.org/implement/standards/product_

brief.cfm?product_id=400

9/1/2016 6

CQL Basics

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=400

Accessing Clinical Data

• Clinical data models contain “statements” of

clinical data, e.g.,

 Patient had a routine check-up on April 3rd

 Patient was administered an antibiotic

 Patient had an appendectomy

 Patient was diagnosed with Type II Diabetes

9/1/2016 7

CQL Basics

Accessing Clinical Data (cont.)

• Statements can be organized into different

types, e.g.,

9/1/2016

8

Patient had a routine check-up on April 3rd

Patient was administered an antibiotic
Patient had an appendectomy
Patient was diagnosed with Type II
Diabetes

Encounter
Medication, Administered
Procedure, Performed
Diagnosis

CQL Basics

Accessing Clinical Data (cont.)

• Within these types, different kinds of

statements can be represented with codes

from code systems.

• Within Encounter, e.g.,

9/1/2016 9

Patient had a routine check-up on April 3rd

Patient was admitted to the ED
Patient was admitted for elective surgery

SNOMEDCT|185349003
SNOMEDCT|4525004
SNOMEDCT|8715000

CQL Basics

Accessing Clinical Data (cont.)

• The codes describing different kinds of

statements are then grouped with value

sets, allowing classes of specific kinds of

statements to be referenced, e.g.,

9/1/2016 10

Patient had a routine check-up on April 3rd

Patient was admitted to the ED
Patient was admitted for elective surgery

Encounter Inpatient
Emergency Department Visit
Elective Encounter

CQL Basics

CQL Retrieve

9/1/2016 11

This retrieve expression results in only the highlighted encounters,
because they have codes that match the “Inpatient” value set.

CQL Basics

Filtering with Where

9/1/2016 12

Introducing an alias, Encounter in this case, allows you to reference
elements of the statement for further filtering using a where clause.
The above filter results in only the highlighted rows, because they are
during the “Measurement Period” (2015 year).

CQL Basics

Relationships (with)

9/1/2016 13

The with clause allows you to define relationships with other data
based on specific criteria.
In this case, only the October encounter is returned, because it has a
LabTest that resulted during the encounter.

CQL Basics

Relationships (without)

9/1/2016 14

Statements can also be excluded based on relationships using the
without clause.
In this case, the October encounter is excluded, because it has a LabTest
that resulted during the encounter.

CQL Basics

Shaping Results with Return

9/1/2016 15

You can return only a subset of the elements in a statement using the
return clause.
In this case, only the relevantPeriod element is returned.

CQL Basics

Ordering Results with Sort

9/1/2016 16

You can order the results using the sort clause.
In this case, the result is sorted by the start of the relevantPeriod
element, ascending.

CQL Basics

Naming Expressions

9/1/2016 17

You can name any expression so that it can be reused in subsequent
expressions using the define declaration.
In this case, the result of “Sorted Encounters” is now the same as the
result of the defined expression.

CQL Basics

Picking Items from Results

9/1/2016 18

The results of retrieves
and queries are lists, so
you can pick items based
on order using First() and
Last().

Because “Sorted
Encounters” is ordered by
the start of the
relevantPeriod, First()
returns the oldest
encounter, while Last()
returns the most recent.

CQL Basics

Picking Items (cont.)

9/1/2016 19

You can also use the
indexer ([]) to pick out any
item by its index in the list.

Indexes in CQL are 0-based,
so the first item is index 0,
the second item is index 1,
and so on.

Note that whenever you’re
performing operations that
rely on the order of
elements in the list, be sure
to use a sort clause to get
the appropriate ordering.

CQL Basics

Strings

9/1/2016 20

CQL supports strings using single-quotes (').

You can escape characters (such as single-
quotes, tabs, carriage returns, and line feeds,
using standard escape characters.

CQL supports string comparison for all the
comparison operators (=, !=, <=, >=, <, and >).

String comparison is case-sensitive, and
based on the Unicode value of each
character.

CQL Basics

Numbers and Calculation

9/1/2016 21

CQL supports Integers (whole numbers), and Decimals.

In calculations and comparisons, integers are implicitly
converted to decimals when necessary.

Comparison of decimals ignores precision.

CQL uses standard mathematical operator precedence.

Use parentheses to force precedence.

Division in CQL always returns a decimal, use div to
perform integer division.

The mod operator returns the remainder of an integer
division.

CQL Basics

Rounding and Exponents

9/1/2016 22

CQL supports standard rounding, 0.5 and above rounds
up, 0.4 and below rounds down. The second argument, if
supplied, specifies the precision of the result.

Truncate() returns the integer component of a decimal.

Floor() returns the greatest integer less than a decimal.
Ceiling() returns the least integer greater than a decimal.

CQL supports exponents and roots
with ^.

Logarithms to a given base use Log().

Natural logarithms use Ln() and Exp().

CQL Basics

Quantities

9/1/2016 23

Quantities in CQL are a number followed by a
UCUM unit.

CQL supports arithmetic and comparison
operators for quantities.

Implementations are required to respect
units, but not necessarily conversions
between units.

Arithmetic operators, in particular, must
return quantities with appropriate units, but
not necessarily converted.

An implementation may throw a run-time
error for an unsupported unit conversion
operation.

CQL Basics

DateTime and Time

9/1/2016 24

CQL supports dateTime, a point-in-time on the
Western calendar, specified with integers for year,
month, day, hour, minute, second, and millisecond,
plus a timezone.

CQL also supports Time, a point-in-time in a 24-hour
period, specified with integers for hour, minute,
second, and millisecond, plus timezone.

Both dateTime and Time support partial values, but
only for trailing precisions (i.e., if you specify a day,
you must also specify a year and month.

If not supplied, timezone is assumed based on the
evaluation context.

CQL Basics

DateTime and Time (cont.)

9/1/2016 25

CQL also supports construction of dateTime
and Time values as expressions.

You can use date from to extract the date
(with no time components) from a dateTime
value.

You can use time from to extract the time
from a dateTime value.

You can use the name of a component to
extract it from a dateTime or Time value.

Now(), Today(), and TimeOfDay() return the
dateTime, Date, and Time, respectively, of
the evaluation context.

CQL Basics

Date Comparison

9/1/2016 26

You can compare dateTime and
Time values using the standard
comparison operators: =, !=, <=,
>=, <, and >.

You can also perform precision-
based comparisons using same
as, before/after of, and same or
before/after.

CQL Basics

Date Arithmetic

9/1/2016 27

CQL supports time-valued quantities with the name (singular or
plural) of the precision as the unit.

UCUM units can also be used (with quotes).

Durations can then be added to
or subtracted from dateTime
and Time values, with the
expected semantics for
durations with variable days
such as years and months.

CQL Basics

Computing Duration and Difference

9/1/2016 28

The duration in..between operator determines the number of whole
periods between two dateTime or Time values.

This expression returns 0 because there are no whole months between the
two dates.

The difference in..between operator determines the number of boundaries
crossed between two dateTime and Time values.

This expression returns 1 because 1 month boundary was crossed between
the two dates.

CQL Basics

Intervals

9/1/2016 29

CQL supports Intervals for
numbers and date/time
values.

You can test for membership with contains and in,
and you can determine the boundaries of an
interval using start of and end of.

You can determine the width of an interval using
width of.

Intervals use standard mathematical notation to indicate open and closed (i.e.,
whether the endpoint is included in (closed) or excluded from (open) the
interval).

CQL Basics

Comparing Intervals

9/1/2016 31

CQL Basics

Timing Phrases

9/1/2016 32

CQL also supports timing phrases that make it easier to express precise
relationships between intervals using natural language.

The before and after operators can have a prefix of starts or ends, and a suffix of
start or end. For example,

CQL Basics

Timing Phrases (cont.)

9/1/2016 33

The before and after operators can also take an offset that indicates how far
away a given relationship should be.

This offset can be absolute, indicating that the boundary of the interval must be
on the offset, or it can be relative, indicating that the boundary must be at least
on the offset.

CQL Basics

Timing Phrases (cont.)

9/1/2016 34

You can also specify a range for the boundary relationship using the within..of
operator.

CQL Basics

List Operations

9/1/2016 35

You can test for membership of items in a list using the contains and in operators.

You can compare lists using equality (=), and the includes and included in
operators.

CQL Basics

Union

9/1/2016 36

The union operator combines two lists, eliminating duplicates.

NOTE: In the current specification (CQL 1.1), union does not eliminate duplicates, so a distinct must
be used. However, this is a DSTU comment to change this behavior to support the more intuitive
duplicate elimination semantics.

CQL Basics

Intersect

9/1/2016 37

The intersect operator results in a list containing only the elements that appear
in both lists.

CQL Basics

Except

9/1/2016 38

The except operator results in a list containing only the elements of the first list
that are not present in the second list.

CQL Basics

Questions?

9/1/2016 39

Resources

• HL7 Cross-Paradigm Specification: Clinical Quality
Language, Release 1 DSTU1.1
 http://www.hl7.org/implement/standards/product_brief.cfm?

product_id=400

• HL7 CDS Workgroup Project Homepage
 http://wiki.hl7.org/index.php?title=Clinical_Quality_Langua

ge

• GitHub Tools Repository
 https://github.com/cqframework/clinical_quality_language

• CQL JIRA site
 https://oncprojectracking.healthit.gov/support/browse/CQLI

T

409/1/2016

CQL Basics

http://www.hl7.org/implement/standards/product_brief.cfm?product_id=400
http://wiki.hl7.org/index.php?title=Clinical_Quality_Language
https://github.com/cqframework/clinical_quality_language
https://oncprojectracking.healthit.gov/support/browse/CQLIT

eCQI Resource Center

• eCQI Resource Center

 https://ecqi.healthit.gov

• CQL Space

 https://ecqi.healthit.gov/cql

9/1/2016 41

CQL Basics

https://ecqi.healthit.gov/
https://ecqi.healthit.gov/cql

9/1/2016 42

CQL Basics

9/1/2016 43

CQL Basics

